Telegram Group & Telegram Channel
Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/113
Create:
Last Update:

Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/113

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA